US009189393B2

a2 United States Patent
Adachi et al.

US 9,189,393 B2
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54) COMPUTER, CONTROL METHOD OF
COMPUTER, AND RECORDING MEDIUM

(75) Inventors: Masahiko Adachi, Tokyo (JP);

Hiroyasu Nishiyama, Kawasaki (JP);
Motoki Obata, Toda (JP)
(73)

")

Assignee: HITACHIL, LTD., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 208 days.

Appl. No.: 13/880,198

@

(22) PCT Filed: Nov. 25, 2011

PCT No.:

§371 (D),
(2), (4) Date:

(86) PCT/IP2011/006557

Jul. 2, 2013

PCT Pub. No.: W02012/073460
PCT Pub. Date: Jun. 7,2012

87

(65) Prior Publication Data

US 2013/0290382 Al Oct. 31, 2013
(30) Foreign Application Priority Data
Dec.2,2010 (JP) oo 2010-268951

(51) Int.CL

(52)

GO6F 7/00
GO6F 17/30
GO6F 12/02
GO6r 1107
GO6F 9/455
U.S. CL

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

CPC ... GO6F 12/0253 (2013.01); GO6F 11/0754
(2013.01); GO6F 12/0276 (2013.01); GO6F
17/30115 (2013.01); GOGF 9/45504 (2013.01);
GO6F 2212/1016 (2013.01)

100~

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

6/2005
12/2007

(Continued)

Hirono et al.
Dmitriev

6,910,213 Bl
7,313,661 Bl

FOREIGN PATENT DOCUMENTS

JP 11-212808 A
JP 2007-004413 A 1/2007
JP 2010-044532 A 2/2010

OTHER PUBLICATIONS

8/1999

Appel, A. W, Simple generational garbage collection and fast alloca-
tion, Software Practice and Experience, 1989.

(Continued)

Primary Examiner — Uyen Le
(74) Attorney, Agent, or Firm — Mattingly & Malur, PC

(57) ABSTRACT

A computer includes a storage region in which an object
generated by executing a program is disposed, and a control
unit that performs execution of the program and releasing of
the storage region. The control unit updates time information
using garbage collection, a capacity of objects in a memory,
or similar as a trigger, acquires information of a program
generating an object and time information at the time of
generation of the object which are recorded in a recording
device so as to be correlated with each other when the object
is generated. The control unit further detects an object which
is unnecessary to execute a subsequent program and acquires
the time information, and records a difference between the
time information at the time of the generation and at the time
of'the detection in the recording device so as to be correlated
with the information of the program.

16 Claims, 19 Drawing Sheets

MEMORY

10

{ 1
H PROGRAM
i READING UNIT
i
1 12
H PROGRAM
' EXECUTION UNIT
H 3
H
H GARBAGE
| COLEOToR
o

Java VM

e

14A Y

i
oBsECT i
DISFOSITION UNIT.

1

oBJECT
MANAGEMENT
UNT

L

..

]
19 i
i
OBJECTLIFE i
ANALYSIS UNIT

208

2

[s |

[ewmsemmome |

21

Java HEAP.

3

‘OBJECT GENERATION TABLE|
‘GENERATION FOINT TABLE.
LIFE INFORMATION TABLE.

!

4

!

5

|

cPy

WPUT AND QUTPUT
DEVICE

]

4
JEXTERNAL STORAGE]
DEVICE

US 9,189,393 B2
Page 2

(56)

2002/0019716
2005/0268286
2009/0037684
2010/0049938
2010/0250629
2011/0213943
2012/0198184

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al

2/2002
12/2005
2/2009
2/2010
9/2010
9/2011
8/2012

Agesen et al.
Obata et al.
Obata et al.
Tzumi et al.
Obata et al.
Obata et al.
Adachi et al.

OTHER PUBLICATIONS

Motoki Obata et al., Explicitly Managed Memory for Java, Journal by
the Information Processing Society of Japan, 2009.

Stephan M. Blackburn et al., Pretenuring for Java, ACM. Conference
on Object-Oriented Programming, Systems, Languages and Appli-
cations, 2001.

Motoki Kohata et al., “Explicitly Managed Heap Memory for Java”,
IPSJ Journal, Jul. 15, 2009, vol. 50, No. 7, pp. 1693 to 1715.

U.S. Patent

FIG.

Nov. 17,2015 Sheet 1 of 19 US 9,189,393 B2
1
o
MEMORY .10
g Java VM \
4 A Y
i 11 1448)
E iad Yad H
] PROGRAM OBJECT
! READING UNIT DISPOSITION UNIT
)
} 12
| PROGRAM OBJECT
H EXECUTION UNIT MANAGEMENT
: . UNIT "
E 7~ S
i GARBAGE OBJECT LIFE
! - COLLECTOR ANALYSIS UNIT ;
1Y
\\ ,"
\\‘ -- "’
20A 22
/\/ /\./
Java PROGRAM PSEUDO-ELAPSED TIME
23
21 fad
r~ OBJECT GENERATION TABLE
Java HEAP 4
2
GENERATION POINT TABLE
25
LIFE INFORMATION TABLE
nd 1 3
CPU
6
5
INPUT AND OUTPUT ad DISPLAY
DEVICE DEVICE
3 4

DEVICE

EXTERNAL STORAGE

U.S. Patent Nov. 17, 2015 Sheet 2 of 19 US 9,189,393 B2

FIG. 2
20 ~
1. public class Test {
2. public static void main() {
3. Sample s = new Sample();
4. // any operations
5. Obj o = new Obj();
7. // any operations
8. s = null;
9, o =null;
10. }
11.}
FIG. 3
GENERATION POINT TABLE 24
/\/271 /\/272 /\/273 /\/274
GENERATION POINT ID TYPE METHOD NAME § LINE NUMBER
1 java.lang.Object m1 linet
2 java.util ArrayList m2 line2

3 java.util. LinkedList m2 line10

U.S. Patent Nov. 17, 2015

Sheet 3 of 19 US 9,189,393 B2
FIG. 4
OBJECT GENERATION TABLE 23
231 232 /233
0

GENERATION POINT ID OBJECT ID G‘_THESQKA‘AT"&'\IME
1 01 1
2 02 1
3 03 2

FIG. 5

LIFE INFORMATION TABLE 26

/\/261 /\/262

GENERATION POINT ID LIFE
1 1
2 2

U.S. Patent Nov. 17, 2015 Sheet 4 of 19 US 9,189,393 B2

FIG. 6

START

. 8140

ACQUIRE OBJECT TYPE/METHOD NAME OF
GENERATION POINT/METHOD LINE NUMBER

St142

ALREADY REGISTERED IN Yes
GENERATION POINT TABLE?

_S144

REGISTER OBJECT TYPE/METHOD NAME/LINE
NUMBER IN GENERATION POINT TABLE

REGISTER GENERATION POINT ID/OBJECT ID/PSEUDO
-ELAPSED TIME (N OBJECT GENERATION TABLE

END

U.S. Patent

FIG. 7

Nov. 17, 2015

START

N
Tl

SECURE DISPOSITION
REGION OF OBJECT

SECURED?

REQUEST EXECUTION OF
GARBAGE COLLECTION
(RELEASE Java HEAP REGION)

Sheet 5 of 19 US 9,189,393 B2
o~ S160
S162
Yes
/\/8164 5168
DISPOSE OBJECT
IN SECURED REGION
5166
/\/

REQUEST UPDATE OF
PSEUDO-ELAPSED TIME

|

END

U.S. Patent Nov. 17, 2015 Sheet 6 of 19 US 9,189,393 B2

FIG. 8

START

LS9

ANALYZE OBJECT GROUP UNNECESSARY
FOR SUBSEQUENT EXECUTION

S192
\< No
IS THERE UNNECESSARY OBJECT?

S194

DETECT UNNECESSARY OBJECT
(OBJECT ID=01)

5196

ACQUIRE GENERATION TIME (T1) OF OBJECT ID=01
AND CURRENT PSEUDO-ELAPSED TIME (Tn)

5198

LIFE OF Tn-T1 =01

.S200

REGISTER LIFE OF OBJECT ID O1
IN LIFE INFORMATION TABLE

AN

END

U.S. Patent

Nov. 17, 2015

Sheet 7 of 19

US 9,189,393 B2

FIG. 9
/,\/ 24‘2
GENERATION POINT TABLE /24"
GENERATION TYPE METHOD LINE
GENERATION TYPE METHOD | LINE POINTID NAME | NUMBER
POINT ID NAME |NUMBER -
- 1 Sample| main 3
1 Sample| main 3 - -
357 2 Obj main 5
OBJECT GENERATION TABLE /~ 232
GENERATION| opecr (D | GENERATION Jad
POINT ID ELAPSED TIME GENERATION|] ogjgcTip | GENERATION
1 01 2 POINT ID ELAPSED TIME
T ") 1 o1 2
- Y L 2 02 4 J
- . 7 -
Sample s = new Sample();| / Obj 0 = new Obj(); .
GC GENERATION POINT ! e 50 ,
Y / - P Time
¢ i it ¢ >
! T | 1 T2 T3t T4 X
2]
.] 1 | : i ‘,‘\
s (o | I\\s

PSEUDO-ELAPSED

TIME

Eﬂple OBJECT IS UNNECESSARY

s = null; F
!
{LIFE INFORMATION TABLE}

GENERATION | yre

26-1
X POINT ID
3

1

o= null;

T

i

T

]

[

§10bj OBJECT IS UNNECESSARY
)

|

{

POINT ID
1
2

AGENERAHON X
UFE | pgep
(\/

U.S. Patent Nov. 17, 2015

Sheet 8 of 19 US 9,189,393 B2
FIG. 10
START
. 5220
ACQUIRE OBJECT TYPE/METHOD NAME OF
GENERATION POINT/METHOD LINE NUMBER
8222
ALREADY REGISTERED IN No
GENERATION POINT TABLE?
Yes \ /\/3226
REGISTER OBJECT TYPE/
METHOD NAME/LINE NUMBER
IN GENERATION POINT TABLE
o~ S224

REGISTER GENERATION POINT ID/OBJECT ID OF
OBJECT TO WHICH INFORMATION REGARDING
OBJECT CONFORMS AND CURRENT PSEUDO-
ELAPSED TIME IN OBJECT GENERATION TABLE

END

U.S. Patent

US 9,189,393 B2

Nov. 17,2015 Sheet 9 of 19
FIG. 11
OBJECT GENERATION TABLE 23
232
/\/231 I /\/233
GENERATION POINT ID OBJECT ID Gﬁﬁgggﬂ%gmﬁ
1 O1 1
2 02 1
3 03 2
1 04 3
FIG. 12
LIFE INFORMATION TABLE 28
261 262 261 262
Vnd i Vi i
R T
1 1 | 1 2 |
‘. i KRR T —_— -l |———-————-———--—,
3 2
'|-------— ﬂ---—l-~l
{ 1 3 I - -
2 ¥ J N N K JUUR VR geee—— —'

[BEFORE AVERAGE IS CALCULATED]

[AFTER AVERAGE IS CALCULATED]

U.S. Patent Nov. 17, 2015 Sheet 10 of 19 US 9,189,393 B2

FIG. 13
2
MEMORY ___)) N _ A0
r Java VM N
I '
! 1 14B 3
| 21
i PROGRAM OBJECT :
! READING UNIT DISPOSITION UNIT i
1
1
| PROGRAM OBJECT H
! EXECUTION UNIT MANAGEMENT i
' i3 UNIT 19
: ind 7~
1
i GARBAGE OBJECT LIFE
1 COLLECTOR ANALYSIS UNIT }
\\\ 'I
oo ‘a’
--------------- TomEmmmmmTTEEETTTTET T 22
20A fad
Al PSEUDO-ELAPSED TIME
Java PROGRAM 93
/\/ 21
OBJECT GENERATION TABLE
Java HEAP /\/ 24
GENERATION POINT TABLE
s 211
SHORT LIFE REGION o 25
r~ 212 LIFE INFORMATION TABLE
2
LONG LIFE REGION yad 6
REGION SECURING
INFORMATION
o~
CPU 1
6
INPUT AND QUTPUT DISPLAY
DEVICE DEVICE
- R
EXTERNAL STORAGE

DEVICE

U.S. Patent

Nov. 17,2015 Sheet 11 of 19 US 9,189,393 B2
FIG. 14
START
\L NSZSG
> ADD SECURED SIZE TO REGION
SECURING INFORMATION
SECURE DISPOSITION
REGION OF OBJECT 5258
DOES
SECURED CUMULATIVE Yes
SIZE EXCEED THRESHOLD
VALUE?

SECURED?

. S254

EXECUTE GARBAGE COLLECTION/
RELEASE Java HEAP REGION

5264

UPDATE PSEUDO-
ELAPSED TIME

\ ~~5266

RESET REGION
SECURING INFORMATION

< |
™~

5260

DISPOSE OBJECT
IN SECURED REGION

o~ 5262

REGISTER GENERATION
INFORMATION OF OBJECT
IN GENERATION POINT TABLE

END

U.S. Patent

Nov. 17, 2015

Sheet 12 of 19

US 9,189,393 B2

FIG. 15
paet 22
GENERATION POINT TABLE s~ 24- GENERATION NETHGDT TNE
GENERATION| ypg [METHOD} LINE POINTID | TYPE { "NAME | NUMBER
POINT ID NAME NUMBER p Sample| _main "
1 Sample| main 3 - -
731 2 Obj main &
OBJECT GENERATION TABLE /' 732
GENERATION] (1 eor 1o | GENERATION -
POINT ID ELAPSED TIME GENERATION| opecT D | GENERATION
p o1 2 POINT ID ELAPSED TIME
T) 1 Q1 2
) \ 2 Q2 4 y
GENERATE Obj OBJECT Y
Obj o = new Obj(); el
: T . 0 Time
{] Al A . i’
i T T4
1
' 7 ! CUMULATIVE AMOUNT
! ; Il I 51 OF USED HEAP
[1 [, / H ;
1 | 1 | K LI '
1 } 1 f / 1 ")
PSEUDO- ' va ;
s T | Ay e
! r
RY '," / | 0bj OBJECT IS UNNECESSARY]
/S i

Sample OBJECT IS UNNECESSA
s = nuli;
' LIFE INFORMATION TABLE }

POINT ID -
/‘/26 2

GENERATION | | e

o=null;
GENERATION| | 1ep

1
2

POINT ID
1

3

26-11

U.S. Patent Nov. 17, 2015 Sheet 13 of 19 US 9,189,393 B2

FIG. 16
300\
2
MEMORY e e —————— ———— .10
,/ Java VM ™~
,I /\/14C \\
PROGRAM |~ /11 OBJECT i
READING UNIT IDISPOSITION UNIT,
1
procRAM 12 OBJECT 18
EXECUTION UNIT MANAGEMENT
UNIT
13
] GARBAGE ~
COLLECTOR OBJECT LIFE 19
ANALYSIS UNIT /\/
15
EXTERNAL OBJECTY™
DISPOSITION UNIT
EXTERNAL ~ 16 EXTERNAL /\/1 7
\\ MEMORY MEMORY 'l
\ SECURING UNIT RELEASING UNIT /l
\\ ’I
B -~ - - 22
20C [PSEUDO-ELAPSED TIME (\/
Java PROGRAM
23
OBJECT GENERATION TABLEY ™
Java HEAP _ 21
211 [~ GENERATION POINT TABLE ¥~ “
LONG LIFE REGION ¥~
25
212 LIFE INFORMATION TABLE
LONG LIFE REGION } 26
REGION SECURING ad
INFORMATION
27 28
EXTERNAL MEMORY REGION EXTERNAL MEMORY
MANAGEMENT TABLE
INPUT AND QUTPUT]
DEVICE | CPU |
L

LIFE INFORMATION FILE

e

U.S. Patent Nov. 17, 2015 Sheet 14 of 19 US 9,189,393 B2

FIG. 17

EXTERNAL MEMORY MANAGEMENT TABLE 28

281 282 283
GENERATION TIME LIFE EXTERNAL MEMORY
INFORMATION ID
1 1 ex1
1 2 ex2

2 3 ex3

U.S. Patent

Nov. 17,2015 Sheet 15 of 19 US 9,189,393 B2
FIG. 18
[START]
~-3310
ACQUIRE TYPE OF
GENERATED OBJECT,
METHOD NAME, AND
LINE NUMBER
ALREADY S312
REGISTERED IN
GENERATION TABLE? No
5314
ACQUIRE LIFE OF GENERATED OBJECT
8316
DOES LIFE EXCEED N
THRESHOLD VALUE?
No
5318
PROCESS BY EXTERNAL \ ~5322
MEMORY SECURING UNIT
CALL OBJECT DISPOSITION UNIT
5320

DISPOSE OBJECT IN SECURED REGION

.4
T

END

U.S. Patent

Nov. 17,2015 Sheet 16 of 19
19
START
/5340
SEARCH EXTERNAL MEMORY
ID CORRESPONDING TO
PSEUDO-ELAPSED TIME AND
LIFE FROM EXTERNAL
MEMORY MANAGEMENT TABLE
342
No
'S THERE EXTERNAL MEMORY ID?
S344
ACQUIRE EXTERNAL MEMORY ID Sﬁg%‘é&’&%ﬁgﬁ
5346 5350
GENERATE EXTERNAL MEMORY ID
NOTIFY EXTERNAL OBJECT WHICH IS REGISTERED IN EXTERNAL
DISPOSITION UNIT OF ADDRESS MEMORY MANAGEMENT TABLE SO AS
CORRESPONDING TO TO BE CORRELATED WITH PSEUDO-
EXTERNAL MEMORY 1D ELAPSED TIME AND LIFE

END

US 9,189,393 B2

U.S. Patent Nov. 17, 2015 Sheet 17 of 19 US 9,189,393 B2

FIG. 20
EXTERNAL MEMORY a " -
MANAGEMENT TABLE 2871 o282 o3
GENERATION | |\ | EXTERNAL GENERATION | |\ [EXTERNAL GENERATION | | |- | EXTERNAL
ELAPSED TIME MEMORY ID [> ELAPSED TIME MEMORY D [> ELAPSED TIME MEMORY ID
2 5 ex1 2 5 ex1
5 10 ex2
971 EXTERNAL MEMORY REGION 27- 2 27-3,
ex} ex},
E- [s](e]
N J 213
X T
‘\‘ ‘—’,/
\\ o
N /"'/ g /\/50 Time
A A A A
T T2 73 T4
GENERATE} |GENERATE GENERATE
ENERATE [CENERATEY [GENERATE | [CENCRATE}
PSEUDO-
ELAPSED 1 2 3 4 5 6
TIME
GENERATION POINT TABLE LIFE INFORMATION TABLE
GENERATION | rypg | METHOD | LINE GENERATION| | e ™7
2 POINT ID NAME |NUMBER POINT ID
it 1 Sample| main 3 1 3
2 Obj main 4 2 5
3 obj | main 6 3 2
4 Sample| main 8 4 10

U.S. Patent Nov. 17, 2015 Sheet 18 of 19 US 9,189,393 B2

FIG. 21

ZOC\

1. public class Test {
2. public static void main() {
3. Sample s1 = new Sample();
4. Obj 01 = new Obj();
5. // any operations
6. Obj 02 = new Obj();
7. // any operations
8. Sample s2 = new Sample();
9. // any operations

10. sl =null;

11. s2 = null;

12. ol = null;

13. // any operations

14. 02 = null;

15. }

16. }

U.S. Patent Nov. 17, 2015 Sheet 19 of 19 US 9,189,393 B2

FIG. 22

void func() {
em = new ExplicitMemory();
em.enter();
Obj obj1 = new Obj();
Obj obj2 = new Obj();
Obj obj3 = new Obj();
em.exit();

em.reclaim();

US 9,189,393 B2

1

COMPUTER, CONTROL METHOD OF
COMPUTER, AND RECORDING MEDIUM

The present application is the U.S. National Phase of Inter-
national Application No. PCT/JP2011/006557, filed Nov. 25,
2011, which claims the benefit of Japanese Patent Application
No.2010-268951, filed on Dec. 2, 2010, the entire contents of
which are hereby incorporated by reference.

TECHNICAL FIELD

The present invention relates to a computer which per-
forms memory management of the computer, a control
method of the computer, and a recording medium.

BACKGROUND ART

In developing a computer program, it is known that secur-
ing and releasing processes of a memory region used by a
program is likely to cause inconvenience to the program such
as referring to an incorrect region. Particularly, in developing
a large scale program, it is difficult for a programmer to
completely understand all of memory securing and releasing
processes.

As means for solving this, NPLL 1 discloses a garbage
collector which automatically performs memory manage-
ment in a program. The garbage collector is a function of
executing garbage collection (hereinafter, referred to as
“GC”) which is a process of determining an unnecessary
object and releasing a region taken up by the object among
memory regions which are dynamically secured by a pro-
gram. For example, in Java (registered trademark) which is
one of language processing systems with a memory manage-
ment function using the garbage collector, means for securing
a memory region is prepared, and, a Java program developer
explicitly describes securing of amemory region such that the
garbage collector dynamically performs GC and releases the
memory.

An execution form of GC largely includes two methods.
There are a method of executing GC in parallel to execution of
a Java program and a method of pausing execution of the Java
program and executing GC. In the former, a pause time due to
GC tends to be shortened although an execution performance
of'the Java program is reduced. In the latter, a pause time due
to GC tends to be lengthened although an execution perfor-
mance of the Java program increases.

As means for solving the latter, NPL 2 proposes a computer
system which has a memory region (hereinafter, referred to as
an “external memory region”) other than targets managed by
GC as well as a memory region managed by GC. This com-
puter system disposes an object generated in a specific section
of a program in the external memory region. The specific
section is designated by executing a program which is explic-
itly described in advance by a program developer.

Description of a program for designating this specific sec-
tion is exemplified in FIG. 22. A CPU executes “em=new
ExplicitMemory();” in the program so as to secure an exter-
nal memory region. A designated section is the time when the
CPU calls a method “em.enter();” and then calls a method
“em.exit();” for the generated object “em”. The CPU dis-
poses objects “obj1”, “obj2” and “obj3” which are generated
in this designated section, in the secured external memory
region. When the secured external memory region is unnec-
essary, the CPU calls a method “em.reclaim();” for the gen-
erated object “em” so as to release the external memory
region.

10

15

25

30

40

45

50

55

65

2

One of usages of this processing system is to dispose an
object group which has a constant life (a period until an object
becomes unnecessary after being generated) in an external
memory region. Thereby, flow of an object into a Java heap is
reduced, and thereby occurrence of GC is suppressed so as to
improve a response performance of the processing system.

In addition, NPL 1 described above also discloses a com-
puter system which applies different memory management
methods depending on whether an object has a short life or a
long life. This computer system divides a Java heap into a
short life region and a long life region, manages age informa-
tion indicating a lifetime of each object, and individually
manages GC of each region. First, the CPU disposes all of
generated objects in the short life region. When the short life
region is depleted, the CPU starts a GC process, and recovers
the objects of the short life region. At this time, the CPU
increases the ages of the surviving objects by 1. If this age
exceeds a threshold value, the CPU regards an object as an
object with a long life, and moves the object to the long life
region. The long life object is managed in a separate region in
this way, and management of the short life region is reduced,
thereby improving an execution performance of a program.

Inaddition, as a computer system which uses the method of
managing objects which are divided into short life objects and
long life objects like the computer system disclosed in NPL 1,
a system which uses a program point for managing an object
life is disclosed in NPL 3. The program point is a point (a
position of a code generating an object) where a program
generates an object in the program generating the object. The
computer system analyzes a life of an object, uses the pro-
gram point when a long life object is generated, and disposes
the object in the long life region from the beginning so as to
reduce a GC process or movement of an object, thereby
improving an execution performance.

More specifically, in the computer system disclosed in
NPL 1, which applies different management methods to short
life and long life objects, the CPU records an object and a
program point where the object is generated in correlation
with each other when executing a program. When an object is
moved to the long life region, the CPU manages the object as
having a long life, and disposes the generated object in the
long life region from the beginning when executing again the
program point where the object is generated.

CITATION LIST
Non Patent Literature

[NPL 1] Appel, A. W, Simple generational garbage collection
and fast allocation, Software Practice and Experience,
1989.

[NPL 2] Motoki OBATA, Hiroyasu NISHIYAMA, Masahiko
ADACHI, Koichi OKADA, Takuma NAGASE, and Kei
NAKAJIMA, Explicitly Managed Memory for Java, Jour-
nal by the Information Processing Society of Japan, 2009.

[NPL 3] Stephan M. Blackburn, Sharad Singhai, Matthew
Hertz, Pretenuring for Java, ACM. Conference on Object-
Oriented Programming, Systems, Languages and Applica-
tions, 2001.

SUMMARY OF INVENTION
Technical Problem
Inthe computer system disclosed in NPL 3, it is determined

whether an object has a short life or a long life, and the object
is managed according to each case; however, in the computer

US 9,189,393 B2

3

system which performs various processes depending on a life
of'an object, it is necessary to analyze a lifetime of an object
as well as short life and long life thereof. To analyze a life of
anobjectisto analyze a period from generation to unnecessity
with respect to an object which is generated at a certain
program point, and to correlate the program point and the
generated object with a lifetime.

For example, in a computer system which controls genera-
tion and deletion of a memory region by a user describing a
program, a programmer is required to examine a life of an
object and to dispose the object in an external memory region.
In this case, the programmer is required to grasp a life of each
object, and thus it is difficult to grasp a life of an object in a
system using a large-scale framework or the like.

One object of the present invention is to efficiently grasp a
life of an object without manual works of a programmer or the
like. In addition, another object of the present invention is to
improve convenience of memory management of a computer
system using a grasped life of an object.

Solution to Problem

A computer includes a storage region in which an object
generated by executing a program is disposed; and a control
unit that performs execution of the program and releasing of
the storage region, wherein the control unit updates time
information by a predetermined trigger; acquires information
of'a program generating an object and the time information at
the time of generation of the object which are recorded in a
recording device so as to be correlated with each other when
the object is generated; detects an object which is unneces-
sary to execute a subsequent program among objects stored in
the storage region and acquires the time information at the
time of the detection; and records a difference between the
time information at the time of the generation and the time
information at the time of the detection in the recording
device so as to be correlated with the information of the
program.

Advantageous Effects of Invention

According to the present invention, it is possible to achieve
an effect of efficiently grasping a life of an object without
manual works, and of improving convenience of memory
management of a computer system using the grasped life of
an object.

Other objects and effects of the present invention will
become apparent from the following description and the like.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating a configuration of a
first embodiment to which the present invention is applied.

FIG. 2 is a diagram illustrating an example of the program
executed in the embodiment to which the present invention is
applied.

FIG. 3 is a schematic diagram illustrating an example of the
generation point table of the embodiment to which the present
invention is applied.

FIG. 41s a schematic diagram illustrating an example of the
object generation table of the embodiment to which the
present invention is applied.

FIG. 51s a schematic diagram illustrating an example of the
life information table of the embodiment to which the present
invention is applied.

10

15

20

25

30

40

45

50

55

60

65

4

FIG. 6 is a flowchart illustrating a process by an object
management unit of the embodiment to which the present
invention is applied.

FIG. 7 is a flowchart illustrating a process by an object
disposition unit of the embodiment to which the present
invention is applied.

FIG. 8 is a flowchart illustrating a process by an object life
analysis unit of the embodiment to which the present inven-
tion is applied.

FIG. 9is a schematic diagram illustrating an example of the
operation process by a computer system of the embodiment to
which the present invention is applied.

FIG. 10 is a flowchart illustrating a process by an object
management unit in a modified example of the first embodi-
ment to which the present invention is applied.

FIG. 11 is a schematic diagram illustrating an object gen-
eration table in a modified example of the first embodiment to
which the present invention is applied.

FIG. 12 is a schematic diagram illustrating a generation
point table of in a modified example of the embodiment to
which the present invention is applied.

FIG. 13 is a block diagram illustrating a configuration of a
second embodiment to which the present invention is applied.

FIG. 14 is a flowchart illustrating a process by an object
disposition unit of the second embodiment to which the
present invention is applied.

FIG. 15 is a schematic diagram illustrating an operation
process by a computer system of the second embodiment to
which the present invention is applied.

FIG. 16 is a block diagram illustrating a configuration of a
third embodiment to which the present invention is applied.

FIG. 17 is a schematic diagram illustrating an external
memory management table of the embodiment to which the
present invention is applied.

FIG. 18 is a flowchart illustrating a process by an external
object disposition unit of the embodiment to which the
present invention is applied.

FIG. 19 is a flowchart illustrating a process by an external
memory securing unit of the embodiment to which the
present invention is applied.

FIG. 20 is a schematic diagram illustrating an operation
process by a computer system of the third embodiment to
which the present invention is applied.

FIG. 21 is a diagram illustrating an example of the program
executed by the computer system shown in FIG. 20.

FIG. 22 is a diagram illustrating an example of the program
used in a computer system in the related art.

DESCRIPTION OF EMBODIMENTS

Hereinafter, first to third embodiments for implementing
the present invention will be described with reference to the
drawings.

First Embodiment

FIG. 1 shows a configuration of a computer system 100
which is a first embodiment to which the present invention is
applied. The computer system 100 is constituted by a general-
purpose computer apparatus such as a server apparatus which
includes a CPU 1, a memory 2 which is a main storage device,
and an auxiliary storage device 3. In addition, the computer
system 100 includes an external storage device 4 via a net-
work or the like. An input and output device 5 is a device to
which a variety of data and threshold values, and the like are
input through a user’s operation. A display device 6 is a

US 9,189,393 B2

5

monitor device which can display various tables and process
results, and the like used by the computer system 100.

In addition, in the present embodiment, the computer sys-
tem 100 has a configuration in which a Java VM 10 based on
the J2EE standard which is an object-oriented language sys-
tem is mounted as an AP server.

Further, the present invention is not limited to the configu-
ration of the Java VM 10, and is applicable to a program
processing system which can manage an object.

The memory 2 is constituted by and stores regions for
storing functional units constituting the Java VM 10, and a
variety of data or programs. The Java VM 10 realizes a pro-
gram reading unit 11, a program execution unit 12, a garbage
collector 13, an object disposition unit 14A, an object man-
agement unit 18, and an object life analysis unit 19 in coop-
eration with the CPU 1 and a program, and is configured to
include the above-described units. In addition, the Java VM
10 has various functions as well as these functional units. For
example, pseudo-elapsed information 22 which is time infor-
mation updated by a certain trigger is managed by a function
of the Java VM 10.

In addition, the memory 2 stores a Java program 20A, the
pseudo-elapsed time 22, an object generation table 23, a
generation point table 24, and a life information table 26 as a
variety of data or programs.

A Java heap 21 is a memory region managed by the Java
VM 10 and disposes a generated object therein.

The program reading unit 11 has a function of reading the
Java program 20A. The program execution unit 12 has a
function of executing commands described in the read Java
program 20A so as to generate an object.

FIG. 2 shows an example of the Java program 20A. The
Java program 20A includes a definition of a Test class. The
Test class has a definition (second to tenth lines) of a main
method. The program execution unit 12 starts executing the
main method of the Test class, and then moves an execution
point of the program to the third line. The third line indicates
a process of generating an object of a Sample class. The
program execution unit 12 executes the program point so as to
generate an object, and the object is disposed in a region
secured from the Java heap 21. When the process in the third
line finishes, the program execution unit 12 moves a program
point to the fourth line, and continuously executes the pro-
gram.

When the program execution unit 12 generates an object,
the object disposition unit 14A has a function of securing a
region of the Java heap 21 and disposing the object therein. In
a case where there is no sufficient blank region in the Java
heap 21, the garbage collector 13 has a function of executing
GC and releasing the Java heap 21.

More specifically, if an object is generated by the program
execution unit 12 executing an object generation command
described in the Java program 20A, the object disposition unit
14 A secures a region corresponding to the object size or more
from the Java heap 21. At this time, in a case where the Java
heap 21 is insufficient and thus the object disposition unit 14A
fails to secure a region, the garbage collector 13 executes GC
$0 as to recover an unnecessary object in the Java heap 21 and
to release the region. On the other hand, in a case where the
object disposition unit 14A can secure a region from the Java
heap 21, the object is disposed in the secured region.

The object management unit 18 has a function of correlat-
ing an object generated by the object execution unit 12 with
information such as an object type, the name of a method
generating the object, and a line number, and time informa-
tion (a value of the pseudo-elapsed time 22 described later)
when the object is generated to manage them. More specifi-

10

15

20

25

30

35

40

45

50

55

60

65

6

cally, the object management unit 18 manages a type, a
method name, a line number, and the like regarding a gener-
ated object, in the generation point table 24 (FIG. 3), manages
generation time information or the like which is time infor-
mation (the pseudo-elapsed time 22) when the object is gen-
erated in an object generation table 27 (FIG. 4), and manages
them in correlation with a common ID (generation point ID).

FIG. 3 shows a configuration example of the generation
point table 24. In this table, information regarding an object at
a time point when the object is generated is registered. When
an object is generated, information at a generation time point
regarding each object is registered in the generation point
table 24 by the object management unit 18. The generation
point table 24 includes information such as a generation point
1D 271 which specifies information of a generation time point
of an object, the type 272 of the generated object, a method
name 273 of a method generating the object, and a line num-
ber 274 in a method generating the object. For example, the
first row given the generation ID “1” in the generation point
table 24 indicates that an object “Java.lang.Object” is gener-
ated in the line number “linel” within the method of which
the method name is “m1”.

FIG. 4 shows a configuration example of the object gen-
eration table 23. In this table, information regarding time
when an object is generated is registered. A generation point
1D 231, an object ID 232, and generation time information
233 which is time information at the time of generation, are
registered in the object generation table 23. The generation
point ID 231 corresponds to the generation point ID 271 of the
generation point table 24 (FIG. 3). The object ID 232 is an ID
for specifying the type 272 of object stored in the type 272 of
the generation point table 24 (FIG. 3). The generation time
information 233 indicates time information (the pseudo-
elapsed time 22) when an object is generated.

As above, by referring to the object generation table 23 and
the generation point table 24, both the information pieces can
be correlated with each other. For example, since the genera-
tion point ID 231 is “1” in the first line of the object generation
table 23, it can be seen that generation point information in
which the generation point ID 271 of the generation point
table 24 is “1” is correlated with the information of the type of
an object="Java.lang.Object” in the line number="line1” of
the method name="m1”. Similarly, it can be seen that the
information is correlated with the generation time
information="T1" which is time information when an object
is generated in the ID="01" which specifies the object.

The pseudo-elapsed time 22 is a value managed by the Java
VM 10. The Java VM 10 has the pseudo-elapsed time 22
which is managed independently. The pseudo-elapsed time
22 is time updated by a predetermined trigger unlike system
time of the computer system 100. The predetermined trigger
is a process regarding deletion (invalidation) of data stored in
a specific storage region in the memory 2. In the first embodi-
ment, the Java VM 10 increments (T1—=T2—=T3 . . .) the
pseudo-elapsed time by using execution of a GC process by
the garbage collector 13 as a trigger.

The object life analysis unit 19 has a function of determin-
ing necessity or unnecessity of an object stored in the Java
heap 21 so as to detect an unnecessary object, and, further, of
managing a life of the object. Here, the life of the object is a
difference between the pseudo-elapsed time 22 (generation
time information) when the object is generated or the object is
disposed in the Java heap 21 and the current pseudo-clapsed
time 22. In addition, the “current” pseudo-clapsed time 22 is
the pseudo-elapsed time 22 at a time point when the object life
analysis unit 19 determines necessity or unnecessity of an
object and thereby detects an unnecessary object.

US 9,189,393 B2

7

The determination of necessity or unnecessity of an object
is performed by the object life analysis unit 19 analyzing
whether or not an object disposed in the Java heap 21 is an
object unnecessary to execute a subsequent program. The
object life analysis unit 19 determines that an object neces-
sary to execute a subsequent program is an object which can
be reached by referring to stacking during execution of a
program, register, or the like, and the other objects are objects
unnecessary to execute the subsequent program. This process
has the same process procedures as, for example, the deter-
mination process of necessity or unnecessity of an object
which is performed when the garbage collector 13 executes
GC. Anobject determined as being unnecessary is detected as
an unnecessary object by the object life analysis unit 19.

In addition, a life of an object is calculated based on the
pseudo-elapsed time 22 when an object which is detected as
an unnecessary object by the object analysis unit 19 is gen-
erated and the pseudo-elapsed time 22 when the object is
detected as an unnecessary object. Specifically, the object
analysis unit 19 refers to the object generation table 23 and
acquires the generation time information 233 using the object
1D 232 of an object detected as an unnecessary object as an
index. Next, the pseudo-elapsed time 22 at the current time
point is acquired, a difference between both of them is calcu-
lated, and the difference is set as a life of the detected unnec-
essary object. The calculated life of the object is managed in
the life information table 26.

FIG. 5 shows a configuration example of the life informa-
tion table 26. The life information table 26 includes a genera-
tion point ID 261 and a life 262. The generation point ID 261
corresponds to the generation point ID 271 of the generation
point table 24 and the generation point ID 231 of the object
generation table 23. The object analysis unit 19 acquires the
generation point ID 231 using the object ID 232 (FIG. 4) used
when calculating a life of the object as an index, so as to be
registered in the life information table 26 in correlation with
the calculated object life 262.

The above description relates to the configuration of the
computer system 100. Next, with reference to FIGS. 610 8, a
process operation by the computer system 100 will be
described.

FIG. 6 shows a process by the object management unit 18.

When the program execution unit 12 generates an object,
the object management unit 18 acquires information (the type
of'the object, the method name, and the line number) regard-
ing the object from the program execution unit 12 (S140).

Next, the object management unit 18 checks whether the
acquired values are registered in the generation point table 24
(S142). If the values have been registered (S142: Yes), the
object management unit 18 finishes the present process, and,
if the values have not been registered (S142: No), the object
management unit 18 generates a generation point ID 271 for
specifying the information regarding the object, registers the
generation point ID in the generation point table 24 and
registers the type 272 of the object, the method name 273, and
the line number 274 acquired from the program execution
unit 12 in the generation point table 24 (S144).

Successively, the object management unit 18 acquires the
pseudo-elapsed time 22, registers the generation time infor-
mation 233 in the object generation table 23, further, registers
the corresponding generation point ID 231 and object ID 232
together (S146), and finishes the process.

FIG. 7 shows a process flow by the object disposition unit
14A.

First, the object disposition unit 14A secures a region cor-
responding to the size of the generated object from the Java
heap 21 (S160). If a region corresponding to the size is insuf-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

ficient on the Java heap 21 and thus region securing is not
successful (S162: No), the object disposition unit 14A trans-
mits a request for execution of GC to the garbage collector 13
(S164). The garbage collector 13 which has received the
execution request recovers objects on the Java heap 21, and
thereby the Java heap 21 is released. In S164, the object
disposition unit 14A transmits a request for updating the
pseudo-elapsed time 22 to the Java VM 10 at the timing when
the garbage collector 13 finishes the recovery of objects
(S166). The Java VM 10 which has received the update
request increments (adding 1) the pseudo-elapsed time 22 so
as to update the pseudo-elapsed time 22. Successively, the
process returns to S160.

Ifaregion corresponding to the size of the generated object
is secured on the Java heap 21 (S162: Yes), the object dispo-
sition unit 14A disposes the object in the secured region and
finishes the process (S148).

FIG. 8 shows a process flow by the object life analysis unit
19.

The object life analysis unit 19 analyzes whether or not an
object disposed in the Java heap 21 is necessary to execute a
subsequent program (S190). The object life analysis unit 19
performs the analysis by determining (S192) whether or not
the object can be reached by referring to staking during
execution of a program, a register or the like. An object which
cannot be reached is determined as being an object unneces-
sary to execute a subsequent program.

Ifthe unnecessary object is detected (S192: Yes), the object
life analysis unit 19 extracts the object (S194). The object life
analysis unit 19 acquires the generation time information 233
(for example, “T1”) from the object generation table 23 using
the object ID (for example, “O1”) of the extracted object as an
index, and acquires the pseudo-elapsed time 22 (“Tn”) at the
current time point (S196). Next, the object life analysis unit
19 sets a difference between Tn and T1 as a life of the object
1D “01” (5198).

In addition, the object life analysis unit 19 acquires the
generation point ID 231 corresponding to the object ID “O1”
from the object generation table 23 so as to be correlated with
the calculated life 264 and to be registered in the life infor-
mation table 26 (S200).

A description will be made of the overall flow in which the
computer system 100 having the configuration and perform-
ing the process manages a life of an object with reference to
FIG. 9. In addition, in the example of FIG. 9, the description
will be made by assuming that the Java program 20A (FIG. 2)
is executed.

FIG. 9 schematically shows a flow of the overall processes
by the computer system 100. In FIG. 9, the transverse axis 50
expresses a time axis. In addition, timing of GC which occurs
during execution of the program is plotted on the transverse
axis 50. A state is shown in which the pseudo-elapsed time 22
increases by 1 according to the occurrence of GC. The black
triangle mark in the figure indicates a time point when the
Java program 20A executes a program so as to generate an
object, and four time points T1, T2, T3 and T4 are shown. A
code of each balloon indicating T1 to T4 is contents of a line
in the Java program 20A which is executed at each time point.
The generation point table 24-1 and the object generation
table 23-1 in the figure indicate contents of the respective
tables when the Java program 20A is executed at T1, the
generation point table 24-2 and the object generation table
23-2 in the figure indicate contents of the respective tables
when the Java program 20A is executed at T2, and a state in
which each table transits from T1 to T2 is indicated. Similarly,
the life information tables 26-1 and 26-2 shown in the lower
part of the figure indicate a transition state from T3 to T4.

US 9,189,393 B2

9

At the time T1, when the program execution unit 12
executes the third line “Sample s1=new Sample();” of the
Java program, the program execution unit 12 generates a
Sample object “s”. At this time, the object management unit
18 registers the type “Sample” of the generated object, the
method name “main” of the generation point, and the line
number “3”, and the generation point ID “1” for specitying
them in the generation point table 24-1. In addition, the object
management unit 18 registers the generation point ID “1”, the
object ID “O1”, and the generation time information="2" in
the object generation table 23-1.

Successively, the program execution unit 12 makes the
execution of the Java program 21 progress, and at T2,
executes the fifth line “//any operations” of the Java program
20A so as to generate an Obj object “0”. In the same manner,
also here, the object management unit 18 registers informa-
tion at the generation point of the Obj object “0” in the
generation point table 24-2 and the object generation table
23-2.

Further, when the program execution unit 12 makes the
process progress, and executes the eighth line of the Java
program 20A at the time T3, the Sample object “s” created at
the time T1 is made to be unnecessary. The object life analysis
unit 19 detects that the Sample object “s” is unnecessary.
Using the ID “O1” for specitying the Sample object, the
generation point ID “1” and the generation time informa-
tion="2" are acquired from the object generation table 23-2.
In addition, the object life analysis unit 19 acquires the
pseudo-elapsed time 22="5" at the current time point, calcu-
lates a difference “3” with the acquired generation time infor-
mation="2", and sets the difference as a life. The object life
analysis unit 19 registers the generation point ID “1” and the
life “3” in the life information table 26-1 so as to be correlated
with each other.

In addition, when the program execution unit 12 executes
the ninth line “//any operations” of the Java program 20A, the
Obj object “0” is made to be unnecessary. In the same manner
as in the case of T3, the object life analysis unit 19 detects the
unnecessary object and a life thereof which are registered in
the life information table 26-2. In the above-described way,
the object management unit 18 and the object life analysis
unit 19 create the generation point table 24, the object gen-
eration table 23, and the life information table 26, thereby
managing a life of an object.

As described above, according to the first embodiment, it is
possible to dynamically manage a life of an object analyzed
through manual works in the related art or a life of an object
in a large scale system in which analysis is difficult.

Particularly, since a life of an object can be dynamically
managed, it is applied to various memory management tech-
niques such as deleting a specific object or moving an object
to a memory region which is not a GC target by using the life
information, and thereby an effect of further improving pro-
cess efficiency and convenience of the various memory man-
agement techniques can be expected.

In addition, it is possible to grasp at which position on a
program an object is generated and to thereby mount a special
process in the object.

Modified Example of First Embodiment

In the above-described first embodiment, in a case where
information at a generation point of an object generated by the
program execution unit 12 has already been registered in the
generation point table 24 and the object generation table 23,
the information is configured not to be registered (refer to
FIG. 6: S182). This configuration has an effect of reducing an

10

15

20

25

30

35

40

45

50

55

60

65

10

analysis process time since a life of an object generated at the
same generation point is analyzed only once by the object life
analysis unit 19.

Here, it is considered that there are cases where even
objects generated at the same generation point have different
lives depending on load circumstances of the computer sys-
tem 100. In these cases, it is considered that the objects
generated at the same generation point are also registered in
the object generation table 23 or the like, and life analysis of
the objects is performed. Hereinafter, as a modified example
of the first embodiment, a description will be made of a
configuration in which, even if an object generated at the
same generation point has already been registered in the
object generation table 23 or the like, information regarding
the object is registered in the object generation table 23 and
the object life information table 26.

FIG. 10 shows a process by the object management unit 18
in the modified example.

When the program execution unit 12 generates an object,
the object management unit 18 acquires information (the type
of'the object, the method name, and the line number) regard-
ing the object from the program execution unit 12 (S220). The
object management unit 18 determines whether or not the
same values have been registered in the generation point table
24 based on the values (S222). If it is determined that the
values have not been registered (S222: No), the object man-
agement unit 18 registers information thereof in the genera-
tion point table 24 and finishes the present process.

If it is determined that the values have been registered
(S222: Yes), the object management unit 18 acquires the
generation point ID 271 corresponding to the same values
registered in the generation point table 24. The object man-
agement unit 18 reads the generation point ID 231 and the
object ID 232 from the object generation table 23 based on the
generation point ID 271, so as to be correlated with the current
pseudo-elapsed time 22 as the generation time information
233 and to be newly registered in the object generation table
23, and finishes the present process.

FIG. 11 shows a state of the object generation table 23
when an object generated at the same generation point is
registered through the process of FIG. 10. Both of the gen-
eration point IDs 231 corresponding to the object IDs 232
“01” and “O4” are “1”. In other words, both of them indicate
that objects with the same object type, method name and line
number are generated at different pseudo-elapsed informa-
tion 22 (generation time information 233).

The object life analysis processing unit 19 analyzes a life of
the object based on the object generation table 23 created in
this way. In the object generation table 23 shown in FIG. 11,
the object life analysis unit 19 performs life analysis of the
object so as to obtain the life information table 26 as shown in
FIG. 12. In FIG. 12, in the first row, the generation point ID
261 is “1” and the life 262 is “1”, whereas, in the fourth row,
the generation point ID 262 is “1” and the life 262 is “3”.

However, the object life analysis unit 19 cannot determine
a unique life of an object generated at a certain generation
point in this state. Therefore, the object life analysis unit 19
calculates an average of the lives with the same generation
point ID 261 in the life information table 26 so as to calculate
alife corresponding to the generation point ID, and correlates
the generation point with the life of the object one to one so as
to be held in the life information table 26.

According to the above-described modified example, since
life analysis is performed for each of objects generated at the
same generation point, and an average value thereof is set as

US 9,189,393 B2

11

a life of the objects generated at the same generation point,
there is an effect in which the accuracy of the life analysis can
be relatively improved.

Second Embodiment

Next, the second embodiment of the present invention will
be described. In the first embodiment and the modified
example thereof, the pseudo-elapsed time 22 is updated using
GC occurrence of the garbage collector 13 as a trigger. In
contrast, the second embodiment has one of features in which
an update trigger of the pseudo-elapsed time 22 is timing
when an object disposition unit 14B secures a region with a
specific size for securing an object from the Java heap 21.

FIG. 13 shows a configuration of a computer system 200
which is the second embodiment to which the present inven-
tion is applied. The computer system 200 has a configuration
in which a function of the object disposition unit 14B is
different from that of the object disposition unit 14A of the
first embodiment, and region securing information 26 is fur-
ther provided. In addition, in the second embodiment, a par-
ticular description will be made of a case where the Java heap
21 has a short life region 211 in which a short life object is
stored and a long life region 212 in which a long life object is
stored. Further, the computer system 200 outputs life infor-
mation file 00 including contents of the object generation
table 23, the generation point table 24 and the life information
table 25 to the external storage device 4.

Configurations of the other functional units and the like are
the same as in the first embodiment. Hereinafter, a difference
from the first embodiment will be mainly described.

The object disposition unit 14B has a function of generat-
ing an object which is required by the program execution unit
12 executing the Java program 20A and disposing the object
in a region with the object size, secured in the short life region
211 of'the Java heap 21, in the same manner as the object 14A
of the first embodiment.

The object disposition unit 14B has a function of updating
a secured memory capacity in a cumulative manner in the
region securing information 26. Here, the object disposition
unit 14B disposes a generated object in the secured region,
then adds a region securing capacity this time to the region
securing information 26, resets (the capacity “0”) a region
cumulative size if a cumulative value exceeds a threshold
value (capacity threshold value), and adds 1 to the pseudo-
elapsed time 22 which is updated.

Conversely, in a case of failing to secure a region of the
short life region 211, the object disposition unit 14B transmits
arequest for executing GC to the garbage collector 13 so as to
release the short life region 211.

The region securing information 26 is information indicat-
ing a capacity secured by the object disposition unit 14B on
the short life region 211 of the Java heap 21. The capacity is
added in a cumulative manner until the object disposition unit
14B resets the region securing information 26. A capacity
threshold value when the capacity is added to the region
securing information 26 in a cumulative manner is preferably
atleastequal to or less than the capacity of the short life region
211. In addition, the capacity threshold value may be set in the
computer system 200 as a fixed value, or may be input so as to
be variable via the input and output device 5.

A process operation by the computer system 200 with the
above-described configuration will be described with refer-
ence to FIGS. 14 and 15.

FIG. 14 shows a process flow by the object disposition unit
14B.

10

15

20

25

30

35

40

45

50

55

60

65

12

The object disposition unit 14B secures a region corre-
sponding to a size of a generated object from the short life
region 211 of the Java heap 21 in response to an object
generation request from the program execution unit 12
(S250).

The object disposition unit 14B determines whether or not
securing of a region is successful (5252). In a case of failing
to secure a region (S252: No), the object disposition unit 14B
requests the garbage collector 13 to execute GC so as to
release a region of the Java heap 21 (S254). Thereafter, the
object disposition unit 14B returns the process to S200. On
the other hand, in a case of succeeding in securing a region
(S252: Yes), the object disposition unit 14B adds the secured
size to the region securing information 26 (5256).

Successively, the object disposition unit 14B determines
whether or not a capacity of the region securing information
26 to which the capacity secured this time is added exceeds
the capacity threshold value (S258), and the flow proceeds to
aprocess in S210 if it is determined that the capacity does not
exceed the capacity threshold value (S260: No). In contrast, if
it is determined that the capacity of the region securing infor-
mation 26 to which the capacity secured this time is added
exceeds the capacity threshold value (S258: Yes), the flow
proceeds to a process in S264.

The object disposition unit 14B adds 1 to a value of the
pseudo-elapsed time 22 at the current time point so as to
update the pseudo-elapsed time 22 (S264). Then, the object
disposition unit 14B resets (“0’) a cumulative secured capac-
ity of the capacity securing information 26 (5266).

Inacaseof No in S258 or after S216, the object disposition
unit 14B disposes the generated object in the secured region
(S260), transmits an instruction for registering generation
information of the object which is generated and is disposed
this time to the object management unit 18 (S262), and fin-
ishes the process.

A description will be made of the overall operation of the
computer system 200 having the object disposition unit 14B
which performs the above-described operation process.

FIG. 15 schematically shows a process executed by the
computer system 200. This figure has contents similar to the
contents shown in FIG. 9 of the first embodiment. In FIG. 15,
a secured heap cumulative amount 51 indicates transition of a
secured amount of the short life region 211 at each time
interval of the pseudo-elapsed time 22 with the bar graph. In
addition, an executed program is the Java program 20A, and
a code in each balloon, and transition of the generation point
table 24, the object generation table 23 and the life informa-
tion table 26 in FIG. 15 are the same as in FIG. 9 of the first
embodiment.

As described above, according to the computer system 200
of'the second embodiment, it is possible to manage a life of an
object according to an object capacity secured in the short life
region 211 of the Java heap 21. Particularly, in the computer
system 200, update of the pseudo-elapsed time 22 can be
more flexibly changed by setting a threshold value, and thus
there is an effect of executing life of an object with higher
accuracy. Therefore, there can be an expectation of an effect
in which convenience is further improved than in the com-
puter system 100 of the first embodiment which updates the
pseudo-elapsed time 22 using execution of GC as a trigger.

In addition, the configuration in which a capacity threshold
value of the region securing information 26 can be flexibly set
s0 as to update the pseudo-elapsed time 22 can also be used to
reduce an update process of the pseudo-elapsed time 22 in a
case where life information is sufficient even with low accu-
racy, and thus there is an eftect of reducing overhead of this
update process.

US 9,189,393 B2

13

In addition, although the computer system 200 of the sec-
ond embodiment is configured to target the short life region
211 on the Java heap 21 and manage a life of an object, the
present invention is not limited to this configuration, and there
may be a configuration in which the long life region 212 is
targeted and a life is managed.

Third Embodiment

Next, a computer system 300 which is the third embodi-
ment to which the present invention is applied will be
described.

FIG. 16 shows a configuration of the computer system 300.
The computer system 300 substantially has a configuration
common to the configuration of the computer systems 100
and 200 of'the first and second embodiments, and, further has
a memory region (hereinafter, referred to as an “external
memory region”) which is not a management target of GC as
one feature of the configuration thereof. A Java machine such
as the Java VM 10 typically has the Java heap 21 as a memory
region storing an object. As described above, the Java heap 21
is a memory region which is a management target of GC by
the garbage collector 13. In contrast, an external memory 25
is a memory region which is not a management target of GC
by the garbage collector 13.

The computer system 300 performs a process whether a
disposition destination is set to an external memory region 27
or the Java heap 21 in relation to a life of an object as one of
features. Further, when objects are disposed in the external
memory region 27, the computer system 300 disposes objects
having similar lives in the same external memory region 27 as
one of features.

Hereinafter, a difference from the first and second embodi-
ments will be mainly described.

First, the computer system 300 includes the external
memory region 27 and an external memory management
table 28 in the memory 2 in addition to the configuration of
the computer system 200 of the second embodiment. Further,
the computer system 300 includes an object disposition unit
14C, an external object disposition unit 15, an external object
disposition unit 16, and an external memory releasing unit 17
as functional units of the Java VM 10.

The external memory region 27 is a memory region which
is not a target of GC and in which an object generated by the
program execution unit 12 can be disposed. In addition, in
FIG. 16, for simplicity, the external memory region 27 is
shown by a single unified region but can be secured and
managed as a plurality of regions by a function of the external
memory securing unit 16 described later. In other words, the
external memory region 27 is a memory region which can be
secured in a plurality and can be released separately.

The object disposition unit 14C is a functional unit which
generates and disposes an object in the same manner as the
object disposition units 14A and 14B of the first and second
embodiments, but is different from them in that a process
starts by not using an object disposition request from the
program execution unit but using a call command from the
external object disposition unit 15 described later as a trigger.
The other configurations are the same.

The external object disposition unit 15 is called using an
object disposition command from the program execution unit
12 as a trigger. When the object disposition command is
received, the external object disposition unit 15 has a function
of determining whether or not generation information regard-
ing a disposed object has already been registered in the gen-
eration point table 24. More specifically, the type of disposed
object, a method name, and a line number of a generation

20

25

40

45

50

14

point are acquired from the program execution unit 12, and
the generation point table 24 is searched based on them,
thereby performing the determination. In a case where this
generation information regarding the disposed object has
been recorded in the generation point table 24, a correspond-
ing life is acquired from the life information table 26 on the
basis of a generation point ID. If the acquired life exceeds a
predetermined threshold value, the process is passed to the
external memory securing unit 16.

On the other hand, in a case where the acquired life is equal
to or less than the predetermined threshold value or genera-
tion information regarding a generated object has not been
registered in the generation point table 24, the process is
passed to the object disposition unit 14C.

Here, the predetermined threshold value may be set to any
value via the input and output device 5 by a user, or may be set
in the system as a fixed value in advance. In the third embodi-
ment, the user can set any value.

The external object securing unit 16 has a function of
receiving a process request from the external object disposi-
tion unit 15, securing a region in the external memory region
27 by referring to pseudo-clapsed time and the external
memory management table 28 in which information regard-
ing a life of a generated object is recorded, and performing
update or the like of the external memory management table
28.

FIG. 17 schematically shows a configuration of the exter-
nal memory management table 28. The external memory
management table 28 is a table in which generation time
information 281 (pseudo-elapsed time 22) at a time point
when the external memory region 27 is secured, a life 282 of
an object which is a target disposed therein, and an external
memory ID 283 for specifying the external memory region 27
are recorded so as to be correlated with each other. In the
example of the first row in FIG. 17, the external memory
region 27 of which the external memory ID is “ex1” indicates
that it is secured when the generation time information 281
(pseudo-elapsed time 22) is “1”, and a life of an object dis-
posed therein is “1”. Similarly, pseudo-elapsed time, a life of
an object, and an external memory ID are managed so as to be
correlated with each other in the external memory manage-
ment table 28, and thereby it is possible to dispose objects
having the same life, generated at the same pseudo-elapsed
time 22, in the same external memory.

In addition, in the third embodiment, an example in which
the pseudo-elapsed time 22 when an object disposed in the
external memory region 27 is generated and a life of the object
conform to the generation time information 281 and the life
282 registered in the external memory management table 28
is described; however, they may not completely conform. For
example, there may be a configuration in which a value of the
pseudo-elapsed time 22 or a life is regarded as conforming
within a predetermined width (allowance).

The external object releasing unit 17 has a function of
performing a releasing process of the external memory region
27. Here, the releasing of the external memory region 27
includes all the meanings such as invalidation of an address of
the external memory region 27, invalidation of an address and
deletion of disposed data (object), and no invalidation of an
address and deletion of only data (object).

The releasing process of the external memory region 27 is
executed by various triggers such as a releasing instruction
from a user input via the input and output device 5, the time
when there are no other objects referred to by an object
disposed in the external memory region 27 or no other objects

US 9,189,393 B2

15

which refer to the object disposed in the external memory
region 27, or finishing of the Java program 21 executed by the
program execution unit 12.

In addition, on the external memory management table 28,
the external object releasing unit 17 invalidates (deletes) the
external memory ID 283 of the external memory region 27
which is a releasing target, and the generation time informa-
tion 281 and the life 282 corresponding thereto from the
external memory management table 28 when releasing the
external memory region 27.

Next, a description will be made of a process operation by
each processing unit of the computer system 300.

FIG. 18 shows a process flow by the external object dispo-
sition unit 15.

First, the external object disposition unit 15 acquires the
type of a generated object, a method name, and a line number
from the program execution unit 12 (S310).

Next, the external object disposition unit 15 searches the
generation point table 24 based on the information and deter-
mines whether or not the information has already been reg-
istered (S312). If it is determined that the information has
already been registered (S312: Yes), the external object dis-
position unit 15 acquires a corresponding generation point ID
271, and acquires a life 262 corresponding to the generation
point ID 271 from the life information table 26 (S314).

Successively, the external object disposition unit 15 deter-
mines whether or not the acquired life 262 exceeds a prede-
termined threshold value (S316). If it is determined that the
life 262 exceeds the predetermined threshold value (S316:
Yes), the external memory securing unit 16 is called so as to
secure a disposition region of the object (S318). Thereafter,
the external object disposition unit 15 stores the object in the
secured memory region and finishes the present process
(S320).

In addition, if it is determined in S312 that generation
information of the object generated by the program execution
unit 12 has not been registered in the generation point table 24
(S312: No), or if it is determined in S316 that the life 262
corresponding to the generation point ID 271 is equal to or
less than the predetermined threshold value (S312: No), the
external object disposition unit 15 passes the control to the
object disposition unit 14C, and finishes the present process.

Next, a process by the external memory securing unit 16
will be described. FIG. 19 shows a process flow by the exter-
nal memory securing unit 16.

The external memory securing unit 16 searches the exter-
nal memory management table 28 based on the pseudo-
elapsed time 22 and the life 262 of the object received from
the external object disposition unit 15 and determines
whether or not there is an external memory ID corresponding
to the pseudo-elapsed time 22 and the life 262 (S340).

If it is determined that there is the external memory ID
(S342: Yes), the external memory securing unit 16 acquires
the external memory ID 283 corresponding to the pseudo-
elapsed time 22 and the life 262 (S344), notifies the external
object disposition unit 15 of an address of the external
memory region 27 corresponding to the external memory ID
(S346), and finishes the present process. In other words, the
external memory securing unit 16 secures a memory region in
which the object is disposed in S346.

On the other hand, if it is determined in S342 that there is
no corresponding external memory ID 283 in the external
memory management table 283 (S342: No), the external
memory securing unit 16 secures a new external memory
region 27 from the memory 2 (S348).

Next, the external memory securing unit 16 generates an
external memory ID 283 for specifying the newly secured

10

15

20

25

30

35

40

45

50

55

60

65

16

external memory region 27 so as to be registered in the exter-
nal memory management table 28, and registers the pseudo-
elapsed time 22 and the life 262 of the object in the external
memory management table 28 so as to be correlated with the
external memory ID 283 as the generation time information
281 and the life 282 (S350). Then, the external memory
securing unit 16 proceeds to S346, notifies the external object
disposition unit 15 of an address corresponding to the gener-
ated external memory ID 283, and finishes the present pro-
cess.

FIG. 20 schematically shows a process example executed
by the computer system 300. This figure has contents similar
to the contents shown in FIG. 9 of the first embodiment and
FIG. 15 of the second embodiment, and shows a state in
which the pseudo-elapsed time 22 is updated along the time
axis 50. An update trigger of the pseudo-elapsed time 22 may
employ any of timing of GC occurrence described in the first
embodiment and timing when an object capacity which is
added in the short life region 211 in a cumulative manner
exceeds a threshold value described in the second embodi-
ment, and, in description of FIG. 20, it is assumed that the
pseudo-elapsed time 22 is updated at the timing when an
object capacity which is added in a cumulative manner
exceeds a threshold value.

In addition, a threshold value of an object life used for
determining whether or not a generated object is disposed in
the external memory region 27 is assumed as “4” which is set
by a user via the input and output device 5.

Further, FIG. 20 shows state transition of the external
memory region 27 and the external memory management
table 28 by exemplifying objects generated at time points of
the time T1, T2 and T4. Furthermore, the generation point
table 24 and the life information table 25 are assumed to have
already been used for life analysis of an object.

In addition, it is assumed that a Java program 20C is
employed in the description referring to FIG. 20. FIG. 21
shows the Java program 20C. In this program, a “Test” class
is defined, and a “main” method is defined therein. In descrip-
tion of FIG. 20, the Java VM 10 repeatedly executes this
program.

First, at the time T1, when the program execution unit 12
executes the third line “Sample s1=new Sample();” of the
Java program 20C, a Sample object “s1” is generated. The
external object disposition unit 15 searches the generation
point table 24 based on the type “Sample” of the generated
object, the method name “main” of the generation point, and
the line number “3”, and acquires a corresponding generation
point ID “1” (the first row of the generation point table).

The external object disposition unit 16 searches the life
information table 25 based on the acquired generation point
ID “1”, and acquires a corresponding life “5”. Since the
threshold value of a life set in advance by the user is “4”, the
external object disposition unit 15 requests the external
memory securing unit 16 to secure the external memory
region 27, and, after a region is secured, the external object
disposition unit disposes the generated object “s1” in the
secured region (refer to the external memory 25-1).

When this external memory region 27 is secured, the exter-
nal memory securing unit 16 searches the external memory
management table 28-1 based on the current pseudo-elapsed
time “2” and the life “5” of the object disposed in the external
memory region 27, and tries to acquire a corresponding exter-
nal memory ID. Since there is no corresponding information
in the external memory management table 28-1, the external
memory securing unit 16 secures a new external memory
region from the memory 2. Then, the external memory secur-
ing unit 16 registers the pseudo-elapsed time “2”, the life “5”

US 9,189,393 B2

17

of the object, and the newly generated external memory ID
“ex1” in the external memory management table 28 so as to be
correlated with each other (refer to the external memory
management table 28-2).

Next, at the time T2, when the program execution unit 12
executes the fourth line “Obj ol=new Obj();” of the Java
program 20C, an Obj object “01” is generated. The external
object disposition unit 15 searches the generation point table
24 and the life information table 25 based on information or
the like of the generated object, and acquires the life “5” of the
object “o01”. Since this life is greater than the threshold value
“4” of the object life set by the user, the external object
disposition unit 25 requests the external memory securing
unit 16 to secure the external memory region 27, and disposes
the object “01” in the secured region (refer to the external
memory region 25-2).

The external memory securing unit 16 at this time is oper-
ated as follows. The external memory securing unit 16
searches the external memory management table 28-2 based
on the pseudo-elapsed time “2” of the object and the life “5”
of the object, and tries to acquire a corresponding external
memory ID. As aresult, the external memory ID “ex1” which
has been registered through the previous process is detected.
Therefore, the external memory securing unit 16 notifies the
external object disposition unit 15 of the external memory
region “ex1” as a disposition destination of the object “o1”. In
addition, since the external memory securing unit 15 can
detect the corresponding external object ID from the external
memory management table 28-2 this time, a registration pro-
cess in the external memory management table 28-2 is not
performed.

In addition, next, at the time T3, when the program execu-
tion unit 12 executes the sixth line “Obj 02=new Obj();” of
the Java program 20C, an Obj object “02” is generated. The
external object disposition unit 15 searches the generation
point table 24 and the life information table 25 based on
information or the like of the generated object, and acquires
the life “2” of the object “02” (the third row of the generation
point table 24, and third row of the life information table 25).
Since this life is equal to or less than the threshold value “4”
of the object life set by the user, the object disposition unit
14C disposes the object “02” in the short life region 211 of the
Java heap 21. In addition, since there is no process by the
external memory securing unit 15 this time, a registration
process in the external memory management table 28 is not
performed.

Finally, atthe time T4, when the program execution unit 12
executes the eighth line “Sample s2=new Sample();” of the
Java program 20C, a Sample object “s2” is generated. The
external object disposition unit 16 searches the generation
point table 24 and the life information table 25 based on
information or the like of the generated object, and acquires a
life “10” of the object “s2” (the fourth row of the generation
point table 24 and the fourth row of the life information table
25). Since this life is greater than the threshold value “4” of
the object life set by the user, the external object disposition
unit 15 requests the external memory securing unit 16 to
secure the external memory region 27, and disposes the object
“s2” in the secured region.

The external memory securing unit 16 at this time is oper-
ated as follows. The external memory securing unit 16
searches the external memory management table 28-2 based
on the pseudo-elapsed time “5” of the object “s2” and the life
“10” of the object, and tries to acquire a corresponding exter-
nal memory ID. As aresult, there is no corresponding external
memory ID in the external memory management table 28-2,
and thus the external memory securing unit 16 secures a new

10

15

20

25

30

35

40

45

50

55

60

65

18

external memory region (an ID thereof is “ex2”) from the
memory 2 and notifies the external object disposition unit 15
of the new external memory region (ex2).

In addition, the external memory securing unit 16 registers
the pseudo-elapsed time “5” of the object “s2”, the life “10”
of'the object “s2”, and the newly generated external memory
1D “ex2” in the external memory management table 28 (refer
to the external memory management table 28-3).

As described above, the computer system 300 can change
the external memory region 27 in which an object is disposed
by using an object life using a generation point of the object.
For this reason, there is an effect in which objects of which
lifetimes are approximately the same can be disposed in the
same external memory region 27. Generally, timing when
objects generated at the same time become unnecessary tends
to be almost the same time. From this, it can be said that, when
a certain external memory region 27 is released by the exter-
nal memory releasing unit 17, if it is detected that a single
object disposed in the released external memory region 27 is
unnecessary, there is a high possibility that other objects
disposed in the external memory region 27 may be also
unnecessary, and there is a high possibility that system
defects may not occur even if the external memory region 27
is released. Therefore, there is an effect in which releasing
efficiency of the external memory region 27 is improved.

In addition, the computer system 300 has a configuration in
which a threshold value of an object life can be set to any
value by a user. Therefore, an object disposed in the external
memory region 27 can be flexibly managed by adjusting a
threshold value of an object life, and thus there is an effect in
which the number of occurrences of GC in JavaVM 10 can be
adjusted.

As above, although the embodiments of the present inven-
tion have been described, the present invention is not limited
to these configurations, and may have various configurations
in the scope without departing from the spirit thereof.

In addition, software or the like which realizes the above-
described respective functional units may be recorded on a
magnetic or optical portable recording medium, and may be
installed in a computer using the recording medium. Further,
the software may be installed in a computer by being down-
loaded via a network such as the Internet.

REFERENCE SIGNS LIST

1 CPU

2 MEMORY

3 AUXILIARY STORAGE DEVICE

4 EXTERNAL STORAGE DEVICE

5 INPUT AND OUTPUT DEVICE

10 Java VM

12 PROGRAM EXECUTION UNIT

13 GARBAGE COLLECTOR

14A, 14B AND 14C OBIECT DISPOSITION UNIT
15 EXTERNAL OBJECT DISPOSITION UNIT

16 EXTERNAL MEMORY MANAGEMENT UNIT
17 EXTERNAL MEMORY RELEASING UNIT

19 OBJECT LIFE ANALYSIS UNIT

20A and 20C Java PROGRAM

21 Java HEAP

22 PSEUDO-ELAPSED TIME

23 OBIECT GENERATION TABLE

24 GENERATION POINT TABLE

25 LIFE INFORMATION TABLE

26 REGION SECURING INFORMATION

27 EXTERNAL MEMORY REGION

28 EXTERNAL MEMORY MANAGEMENT TABLE

US 9,189,393 B2

19

The invention claimed is:

1. A computer comprising:

amemory including a first storage region in which objects
generated by executing a program are disposed; and

a processor programmed to execute the program and
release the storage region,

wherein the processor is further programmed to:

acquire information of a program generating one object of
the objects stored in the first storage region and time
information at the time of generation of the one object
which are recorded in a recording device so as to be
correlated with each other when the one object is gen-
erated;

detect that the one object is unnecessary to execute a sub-
sequent program among the objects stored in the first
storage region and acquires, at the time of the detection,
time information which has been updated in accordance
with a predetermined trigger; and

record a difference between the time information at the
time of the generation of the one object and the time
information at the time of the detection of the one object
in the recording device so as to be correlated with the
information of the program.

2. The computer according to claim 1,

wherein the processor updates the time information when
garbage collection is executed as the predetermined trig-
ger.

3. The computer according to claim 1,

wherein the processor updates the time information when a
capacity of the objects stored in the first storage region
exceeds a capacity threshold value as the predetermined
trigger.

4. The computer according to claim 3,

wherein the processor updates the time information when a
cumulative capacity of the objects stored in the first
storage region exceeds the capacity threshold value, and
resets the cumulative capacity.

5. The computer according to claim 4,

wherein the processor is further programmed to:

set the capacity threshold value based on a value input via
an input device which can be operated by a user.

6. The computer according to claim 3,

wherein the processor is further programmed to:

set the capacity threshold value based on a value input via
an input device which can be operated by a user.

7. The computer according to claim 1,

wherein the information of the program includes at least
information regarding a method which generates the one
object.

8. The computer according to claim 7,

wherein the information regarding the method includes a
method name and a line number.

9. The computer according to claim 1,

wherein, when the one object stored in the first storage
region does not refer to other objects or is not referred to
by other objects, the processor detects that the one object
is unnecessary.

10. The computer according to claim 1,

wherein the processor is further programmed to:

acquire the recorded difference of the one object when the
information of the program generating the one object,
acquired at the time of generation of the object, and the
time information at the time of generation of the one
object have already been recorded; and

secure a second storage region in the memory which is not
a target of garbage collection when the recorded differ-

20

25

30

35

40

45

50

55

60

65

20

ence of the one object exceeds a predetermined thresh-
old value, and disposes the one object in the second
storage region.

11. The computer according to claim 10,

wherein the processor is further programmed to:

store the recorded difference of the object, time informa-
tion when the second storage region is secured, and
information for specifying the second storage region so
as to be correlated with each other; and

secure a third storage region which is not a target of gar-
bage collection if the recorded difference of the one
object and current time information are not stored when
the second storage region is secured.

12. The computer according to claim 11,

wherein the processor disposes the one object in the third
storage region which is not a target of garbage collection
based on information for specifying another storage
region correlated with the recorded difference of the one
object and the current time information if the recorded
difference of the one object and the current time infor-
mation are stored when another storage region is
secured.

13. The computer according to claim 10,

wherein the processor is further programmed to:

set the predetermined threshold value based on a value
input via an input device which can be operated by a
user.

14. The computer according to claim 10,

wherein the processor is further programmed to:

determine whether or not the one object stored in the sec-
ond storage region is unnecessary to execute a subse-
quent program, and, when it is determined that the one
object is unnecessary, release the second storage region.

15. A control method of a computer including a memory

having a storage region in which objects generated by execut-
ing a program are disposed, and a processor programmed to
execute the program and release of the storage region, the
control method comprising:

causing the processor to:

acquire information of a program generating one object of
the objects stored in the storage region and time infor-
mation at the time of generation of the one object which
are recorded so as to be correlated with each other when
the one object is generated;

detect that the one object is unnecessary to execute a sub-
sequent program among the objects stored in the storage
region and acquire, at the time of the detection, the time
information which has been updated in accordance with
a predetermined trigger; and

record a difference between the time information at the
time of the generation of the one object and the time
information at the time of the detection of the one object
so as to be correlated with the information of the pro-
gram.

16. A non-transitory computer readable medium storing

instructions causing a computer, which includes a memory
having a storage region in which objects generated by execut-
ing a program are disposed and a processor programmed to
execute the program and release of the storage region, to
execute a method comprising:

acquiring information of a program generating one object
of the objects stored in the storage region and time
information at the time of generation of the one object
which are recorded so as to be correlated with each other
when the one object is generated;

detecting that the one object is unnecessary to execute a
subsequent program among the objects stored in the

US 9,189,393 B2
21

storage region and acquiring, at the time ofthe detection,
time information which has been updated in accordance
with a predetermined trigger; and

recording a difference between the time information at the
time of the generation of the one object and the time 5
information at the time of the detection of the one object
so as to be correlated with the information of the pro-
gram.

22

